During some restoration work here, we had three largish Douglas firs limbed and topped for wildlife snags. We didn’t kill them, because the thinking at the time was that live damaged trees remain standing longer to provide wildlife habitat. Ten years on, these guys do, in fact, still have a lot of life left in them. One study1 found that 23% of non-fatally topped Douglas fir (Pseudotsuga menziesii) were still alive 16-18 years later. Raptors can use them for perching, and the thick growth stimulated by cutting the leader makes a wide nesting area. The height and breadth of a tree provides the structural diversity of vertical space and occasionally cavities, but see below.
Ten year old conifer snags
Dead trees equal higher biological diversity
I would argue that dead trees might be more useful than live snags. Once dead, biological resources in a live tree’s wood, sequestered during its lifetime, become available to microbes, fungi and arthropods. That is a gateway to creating living space for cavity nesting birds, mammals, bees, and other wildlife.
At first, even a dead tree is still hard and intact. Woodpeckers have to wait awhile before they can really tuck in and excavate nest cavities. Also their prey may not be able to get past a live tree’s defenses, which are many.
Recent heat waves and droughts have hastened death for some trees.
After defensive chemicals leach from the dead tree, wood-rotting fungi (ubiquitous in Pacific Northwest forests) move in to soften up the wood and begin the recycling process. One of these pioneers is a mushroom called veiled polypore (Cryptoporus volvatus). Fruiting bodies (mushrooms) appeared on the snag above, soon after it died, indicating that the mycelium had already invaded the sap wood.
This fungus is called a veiled polypore because it forms a pouch or envelope over the pore layer where spores are produced. The Latin name is more descriptive: hidden pores, covered by a sac-like membrane. At first look, one might mistake it for a puffball type mushroom (I did).
Opening in the lower surface of mature polypore
X-section of veiled polypore opened to show pore layer inside
Immature fruiting body
Cryptoporus volvatus
Dead tree with marshmallow-sized polypores fruiting on bark
A gallery of fungi on dead standing tree. Beetles have probably inoculated the sap wood with fungus (see below)
Bark beetles and many other insects take up residence inside the moist and nutritious interior. They may be eating or parasitizing each other, or just taking advantage of the warm, moist, and protected space and available mushroom food. Beetles carry spores into the bark when they bore into the sap wood of this or other dead and dying trees. Billions more spores are shed and dispersed via air currents.
Note the circular beetle entrance hole to the left of emerging fruiting body.
This fungus colonizes recently dead or almost dead trees, causing sap rot that softens the wood under the bark. That’s the beginning of an explosion of diversity and nutrient recycling: microorganisms, invertebrates, birds, mammals, and others use the resources built by the tree over its lifetime. Some, like molluscs, newts, frogs, and reptiles, take advantage of the spongy, water-retentive rotting wood and physical shade during the dry season. Others forage for insects, eat algae, or feast on abundant carbon in the wood itself. A large log on the ground even attracts nitrogen, an essential plant nutrient in short supply in the soil.
When the wood is soft enough, primary cavity nesters2 begin to chip off bark and make holes. Secondary cavity nesters follow: squirrels, owls, and others that don’t excavate but need the holes for nesting and protection. Cavities are in short supply in modern landscapes and birdhouses do not replace the complexity and richness of large dead trees.
Whether as a standing snag or a log on the ground, dead and partially dead trees provide long lasting ecosystem benefits. Snags and large downed logs rule, obviously! Let’s keep more of them (looking at you Oregon Dept of Forestry).
Yes, they are surprisingly diverse. I like to think of big trees as the whales of the forest – when they die lots of other life benefits and their resources benefit new trees too.
Thanks for the thoughtful comparison. It had never occurred to me to leave a live snag, but I agree with your conclusion that the dead ones probably provide more beneift overall (unless you are a bird looking to build a nest.) I was pleased when our local (Edmonds) Parks Department started leaving fallen trees and leaving snags about 12 years ago. All kinds of life forms have made use of them.
Yes, they are surprisingly diverse. I like to think of big trees as the whales of the forest – when they die lots of other life benefits and their resources benefit new trees too.
LikeLike
Thanks for the thoughtful comparison. It had never occurred to me to leave a live snag, but I agree with your conclusion that the dead ones probably provide more beneift overall (unless you are a bird looking to build a nest.) I was pleased when our local (Edmonds) Parks Department started leaving fallen trees and leaving snags about 12 years ago. All kinds of life forms have made use of them.
LikeLike
Thanks, I really enjoy GVJ.
Tim
LikeLiked by 1 person